Sensory Conflict Disrupts Activity of the Drosophila Circadian Network
نویسندگان
چکیده
Periodic changes in light and temperature synchronize the Drosophila circadian clock, but the question of how the fly brain integrates these two input pathways to set circadian time remains unanswered. We explore multisensory cue combination by testing the resilience of the circadian network to conflicting environmental inputs. We show that misaligned light and temperature cycles can lead to dramatic changes in the daily locomotor activities of wild-type flies during and after exposure to sensory conflict. This altered behavior is associated with a drastic reduction in the amplitude of PERIOD (PER) oscillations in brain clock neurons and desynchronization between light- and temperature-sensitive neuronal subgroups. The behavioral disruption depends heavily on the phase relationship between light and temperature signals. Our results represent a systematic quantification of multisensory integration in the Drosophila circadian system and lend further support to the view of the clock as a network of coupled oscillatory subunits.
منابع مشابه
Light Dominates Peripheral Circadian Oscillations in Drosophila melanogaster During Sensory Conflict.
In Drosophila, as in other animals, the circadian clock is a singular entity in name and concept only. In reality, clock functions emerge from multiple processes and anatomical substrates. One distinction has conventionally been made between a central clock (in the brain) and peripheral clocks (e.g., in the gut and the eyes). Both types of clock generate robust circadian oscillations, which do ...
متن کاملNeural circuits underlying circadian behavior in Drosophila melanogaster.
Circadian clocks include control systems for organizing daily behavior. Such a system consists of a time-keeping mechanism (the clock or pacemaker), input pathways for entraining the clock, and output pathways for producing overt rhythms in behavior and physiology. In Drosophila melanogaster, as in mammals, neural circuits play vital roles in all three functional subdivisions of the circadian s...
متن کاملManipulations of amyloid precursor protein cleavage disrupt the circadian clock in aging Drosophila.
Alzheimer's disease (AD) is a neurodegenerative disease characterized by severe cognitive deterioration. While causes of AD pathology are debated, a large body of evidence suggests that increased cleavage of Amyloid Precursor Protein (APP) producing the neurotoxic Amyloid-β (Aβ) peptide plays a fundamental role in AD pathogenesis. One of the detrimental behavioral symptoms commonly associated w...
متن کاملAn ecdysone-responsive nuclear receptor regulates circadian rhythms in Drosophila
Little is known about molecular links between circadian clocks and steroid hormone signalling, although both are important for normal physiology. Here we report a circadian function for a nuclear receptor, ecdysone-induced protein 75 (Eip75/E75), which we identified through a gain-of-function screen for circadian genes in Drosophila melanogaster. Overexpression or knockdown of E75 in clock neur...
متن کاملDopamine acts through Cryptochrome to promote acute arousal in Drosophila.
The fruit fly, Drosophila melanogaster, is generally diurnal, but a few mutant strains, such as the circadian clock mutant Clk(Jrk), have been described as nocturnal. We report here that increased nighttime activity of Clk mutants is mediated by high levels of the circadian photoreceptor CRYPTOCHROME (CRY) in large ventral lateral neurons (l-LN(v)s). We found that CRY expression is also require...
متن کامل